Borland Builder/Hardware(Direct I/O) Info

This document is to address some of the issues that face developers who needs direct access to hardware in their programs. It is neither eloquent or all encompassing so please excuse the informality. :]

When using Dos this was a relatively simple thing to accomplish. Functions like inp and outp allowed reading and writing data to I/O ports. Having just recently switched to Windows programming and being an EE, I was miffed by the fact that there are various hurdles involved in doing port I/O in Windows applications. In this document I address some of the topics and their potential solutions that I have come across (through various sources…Thanks!) over the past couple months. Hopefully I can add to this as I dig deeper into these issues. Eventually I’d like to cover interrupts and DMA, but until I know how to implement them easier in Windows or need to use them I’ll hold off. I’ll try to be specific to BCB where possible but some of the topics covered here can be done using any compiler.

32 bit Console Applications:

It seems that console applications seem to follow the same mechanisms for access to hardware as GUI apps do. Inp and Outp do not work when writing 32 bit console apps in Borland builder. The differences that apply to either Win95 and WinNT hold true for 32 bit console apps when dealing with hardware issues. I have been able to run 16 bit Dos C programs from Win95 with no problem however. This doesn’t help if you’re developing using BCB though :] .

Windows 95:

There are two direct approaches to doing port I/O in Windows 95 using Borland Builder.

1. Using the __emit__ command. The emit command is a pseudo ASM command that Borland left over from BC++. I myself have had no luck with the command and the routines using __emit__ (see below). One person informed me that these functions will not work if global variables are passed to these functions as parameters. The ASM equivalents (see below) are commented above the __emit__ statements.

2. Using inline assembly. You must own TASM 5.0 (available from Borland) and install the Borland builder patch for TASM which is on the BCB CD in the TASM directory or directly from Borland at this web address- (add address here)

Also make sure that the directory you place TASM in is in your path or else BCB won’t be able to hand off the ASM code to it during the compiling stage.

These functions (see the commented lines below again) are the same you would use in MASM or if writing an application with any other compiler. I have had great success using this method and the only downfalls have been the price of TASM and the fact that it will NOT work with Windows NT which brings me to the next topic.

void outportb(unsigned short int port, unsigned char value)

{

// mov edx, *(&port);

__emit__(0x8b, 0x95, &port);

// mov al, *(&value);

__emit__(0x8a, 0x85, &value);

// out dx, al;

__emit__(0x66, 0xee); }

 void outportw(unsigned short int port, unsigned short int value)

{

// mov edx, *(&port);

 __emit__(0x8b, 0x95, &port);

// mov ax, *(&value);

 __emit__(0x66, 0x8b, 0x85, &value);

// out dx, ax;

__emit__(0xef); }

 unsigned char inportb(unsigned short int port)

{

 unsigned char value;

// mov edx, *(&port);

 __emit__(0x8b, 0x95, &port);

// in al, dx;

 __emit__(0x66, 0xec);

// mov *(&value), al;

 __emit__(0x88, 0x85, &value);

return value;

 }

 unsigned short int inportw(unsigned short int port)

{

 unsigned short int value;

// mov edx, *(&port);

 __emit__(0x8b, 0x95, &port);

// in ax, dx

__emit__(0xed);

// mov *(&value), ax

__emit__(0x66, 0x89, 0x85, &value);

return value;

}

Windows NT:

Windows NT handles hardware more abstractly than Win95. This is for portability reasons and maintenance and others I won’t get into. Win NT abstracts the hardware so that it can run with different processors. Device Drivers are pretty much the only way to get direct access to any hardware (There is an undocumented, secret way to do it, but it toys with user access levels and can hurt system integrity. If anyone is interested in this check Dr. Dobbs C++ Journal (place month here and article name) However, I bet future versions of WinNT will eliminate this workaround.) Avoiding getting too deep in the NT architecture it’s safe to follow this rule of thumb; No matter what, you need a device driver to do port I/O. Where this driver comes from is a different story. You can write your own (only for the faint of heart and DDK experts), or buy some of the available shareware and commercial driver packages. At the end of this document I have listed some sites to visit and included short descriptions of each. I myself have only tried the Tinyport driver which worked great for me after getting around some problems calling the DLL from within my app (maybe an addendum to this doc :]).

Parallel Port:

The Parallel port is a popular port to use for engineers because it works on +5 volts and 0 (CMOS). This is standard for most chips and relays. Bi-directional printer ports pose a problem (say that 3 times fast) that won’t be address at this time and that’s protocol. For reading I have just used the control register when dealing with a bi-directional PP. I’ll save this topic for someone more experienced with it. A great place of reference for dealing with this subject is –

Craig Peacock’s Interfacing the PC http://www.senet.com.au/~cpeacock/
He also has great info on Serial ports.

Another good site is The PC Parallel Port http://www.lvr.com/parport.htm
The reason I mention this here is because rather than access these ports directly (they map to I/O ports) you can use the WinAPI to access them. It involves some work, but if you’re desperate you can do it. I prefer just writing to the I/O port.

I hope this document has helped you in some way. I could have used it a while ago! I don’t claim to be an expert in these areas so errors or misnomers may be present. I welcome any ideas for improvement or correction to this document. Long live the hardware weenies!!!!!!!

This document was created by Brian Sturk in 1996. Some information contained

may be outdated. Please contact me w/ updates.

bsturk@adelphia.net
http://users.adelphia.net/~bsturk
Other interesting Hardware related pages:

BlueWater Systems (developers of WinRT) generic driver creator for WinNT http://www.wolfenet.com/~paull/
Tom’s Hardware page (great info on all aspects of hardware)

 http://sysdoc.pair.com/
Electronics and Programming

 http://www.nerc.com/~amiller/
ASM Faq

 http://www.inx.de/~nkomin/html/gen1.html
Driver X

http://www.tetradyne.com/
Download for the Tinyport driver and dll

http://www.lvr.com/tinyport.zip
